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Rotating convection-driven dynamos at low Ekman number
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School of Mathematical Sciences, University of Exeter, Exeter EX4 4QE, England

~Received 10 October 2001; revised manuscript received 18 July 2002; published 22 November 2002!

We present a fully 3D self-consistent convection-driven dynamo model with reference to the geodynamo. A
relatively low Ekman number regime is reached, with the aim of investigating the dynamical behavior at low
viscosity. This regime is computationally very demanding, which has prompted us to adopt a plane layer model
with an inclined rotation vector, and to make use of efficiently parallelized code. No hyperdiffusion is used, all
diffusive operators are in the classical form. Our model has infinite Prandtl number, a Rayleigh number that
scales asE21/3 (E being the Ekman number!, and a constant Roberts number. The optimized model allows us
to study dynamos with Ekman numbers in the range@1025,1024#. In this regime we find strong-field dynamos
where the induced magnetic fields satisfy Taylor’s constraint to good accuracy. The solutions are characterized
by ~i! a MAC balance within the bulk, i.e., Coriolis, pressure, Lorentz, and buoyancy forces are of comparable
magnitude, while viscous forces are only significant in thin boundary layers,~ii ! the Elsasser number isO(10),
~iii ! the strong magnetic fields cannot prevent small-scale structures from becoming dominant over the large-
scale components,~iv! the Taylor-Proudman effect is detectable,~v! the Taylorization decreases as the Ekman
number is lowered, and~vi! the ageostrophic velocity component makes up 80% of the flow.

DOI: 10.1103/PhysRevE.66.056308 PACS number~s!: 47.65.1a, 91.25.Cw
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I. INTRODUCTION

Significant progress has been made in recent years in
merical simulations of the geodynamo. Self-consistent
models now produce dipole-dominated magnetic fields w
strengths and reversals similar to the geomagnetic fi
However, the numerically accessible part of parameter sp
is still quite far from the actual parameter values of planet
dynamos. In this paper we focus on the problems relate
the low viscosity regime, which is the relevant limit for pla
etary dynamos. At present, 3D convection-driven dynamo
rotating spherical shells typically have Ekman numbers
the rangeEP@1024,1023#, e.g., Christensenet al. @1#. Vis-
cosity still plays an important role in these solutions, so i
not clear whether they are in the correct dynamical regim
i.e., the leading order force balance in these models may
be the same as the leading order force balance in plane
interiors. Narrowing the investigated part of parameter sp
and reducing the integration time to a small fraction of t
magnetic diffusion time may allow Ekman numbers belo
1024. In comparison, a 3D plane layer model offers a mo
cost-reduced and efficient code, mainly because Carte
geometry codes make effective use of fast Fourier transfo
in all three dimensions. It is then possible to investigate
next decadeEP@1025,1024#. Glatzmaier and Roberts@2#
made one of the first attempts to circumvent the difficult
at low viscosity by use of hyperviscosity. This modified vi
cosity operator enhances diffusion monotonically as a fu
tion of the latitudinal wave number. Later, Zhang and Jo
@3# showed that hyperviscosity has significant dynamical
fects, broadening the convection cells as higher classical
cosity would do. Hyperviscosity can also prevent the d
namo from reaching solutions satisfying Taylor’s constra
at low Ekman number, see Sarsonet al. @4#. Thus it seems
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that the present implementations of hyperviscosity are
limited value when investigating low viscosity features
convection-driven dynamos. In this paper we use the cla
cal form for all diffusion terms.

This paper considers nonmagnetic convectio
convection-driven kinematic dynamos, and fully se
consistent dynamos at low Ekman number. It is organized
follows. A model description is given in Sec. II. In Sec. I
we consider the properties of low Rayleigh number nonm
netic convection. Based on the nonmagnetic bifurcat
scheme, we select in Sec. IV a number of points in param
space for the full dynamo problem. The dynamo results
described in Sec. V. Section VI gives our conclusions.

II. THE MODEL

An incompressible electrically conducting fluid
bounded by two horizontal plates. The distance between
plates isd. We imposed periodicity in the horizontal (x,y)
directions, i.e., we may depict the layer as a box, Fig.
Nonslip boundary conditions are imposed on the veloc
Gravity g is uniform and directed vertically downwards. Th
system is heated from below keeping a temperature dif
enceDTb between the plates. Solid electrical insulators a
imposed outside the layer. The rotation axis of the syst
V5Vera , whereera5(0,2sinu,cosu), is tilted relative to
vertical by an angleu in the (y,z) plane. The inclined rota-
tion axis may be considered as an attempt to model a n
polar region of the earth’s outer core. For zero inclinatio
the system is (x,y) symmetric. A consequence is the exi
tence of the Ku¨ppers-Lortz instability of finite-amplitude
convection where the axis of the dominating convection r
continually rotates about thez axis. Recent work on this
instability may be found in Ref.@5#. Inclining the rotation
axis sufficiently eliminates this instability. This reduces t
need of high resolution along the convection rolls, so tha
2.5D model~see Sec. III B below! can be used to explore
©2002 The American Physical Society08-1
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parameter space alongside fully 3D runs. On the other h
increasingu towardsp/2 for E<131024 causes the flow a
onset of convection to become increasingly poloidal. At
sigular point u5p/2 the flow is purely poloidal. Atu
5p/2.1 nokinematic dynamos have been found for mod
ate Rayleigh and Roberts numbers; see also Sec. IV. A
compromise between these two extremes, we choosu
5p/4, where the marginal flow atE5131024 has equi-
partion between the toroidal and poloidal energies.

In the Boussinesq approximation, we then solve

era3u52¹f1~¹3B!3B1qRaTez1E¹2u, ~1a!

]B

]t
5¹3~u3B!1¹2B, ~1b!

]T

]t
1u•~¹T2ez!5q¹2T, ~1c!

¹•u50, ¹•B50, ~1d!

where the temperatureTb1T has been decomposed into th
basic state profileTb(z)52z21/21Tb(21/2) and pertur-
bationT. At the boundariesT(x,y,61/2)50. The velocity is
denoted byu, the magnetic field byB, andf is the sum of
the pressure, the centrifugal potential, and the buoyancy
tential of the basic state. In the following,f is referred to as
the pressure. We have nondimensionalized the system
choosing the following scales:

t:d2/h, r :d, u:h/d, B:A2Vm0rh,

Tb ,T:DTb , f:2Vh, ~2!

where (m0 ,r,h) are the vacuum permeability, density, a
magnetic diffusivity, respectively. Thus in addition to th
angle of inclinationu we introduce the Ekman, Rayleigh
and Roberts numbers

~E,Ra,q!5~n/2Vd2,gaDTbd/2Vk,k/h!,

FIG. 1. A rotating cube of liquid made up of electrically co
ducting material. A Cartesian coordinate system is fixed relative
the box. The coordinate origin is at the box center, and the coo
nate directions are indicated by the vector triplet.
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where (n,k) are the kinematic viscosity and thermal diffu
sivity, and a is the thermal expansion coefficient. Th
Rossby number Ro5h/2Vd2 estimates the strength of th
inertial acceleration compared to the Coriolis force. For
geodynamo where (Ro,E)5(1026,10215), it would be opti-
mal to apply the magnetostrophic approximation~vanishing
inertial acceleration and viscous forces!, but inviscid self-
consistent models have so far proven to be numerically
tractable. In our model we put Ro[0 but retain kinematic
viscosity. The Prandtl number Pr5E/qRo is then infinite.

In units of RoVrhd3 andVrhd3, the kinetic and mag-
netic energies are simplyEkin5^uuu2&xyz and Emag
5^uBu2&xyz, where^•••&xyz denotes the volume average. W
note that for Ro50, we cannot compare the dimension
kinetic and magnetic energy. The Elsasser number is in te
of the dimensional magnetic field defined byL
[Bdim

2 /2Vm0rh. Thus the Elsasser number may be es
mated by the nondimensional magnetic energy,L5B2

'Emag.
The system~1a!–~1d! is solved by expanding the soleno

dal fieldsu andB in toroidal, poloidal, and mean field com
ponents

u5¹3Vez1¹3¹3Wez1U, ~3a!

B5¹3Gez1¹3¹3Hez1F. ~3b!

The mean fieldsU and F depend only onz, and have no
component in thez direction. Equations for the velocity po
tentials are obtained by thez component of the curl and
double curl of Eq.~1a!. The resulting system is supple
mented with nonslip boundary conditions. In a similar wa
the time derivative of the the magnetic field potentials a
found from thez component and thez component of the curl
of Eq. ~1b! together with electrically insulating boundar
conditions. Equations for the mean fields are obtained byx-y
averaging the horizontal part of Eqs.~1a! and ~1b!

cosu ez3U5$~¹3B!3B%h1E
]2U

]z2
, ~4a!

]F

]t
5$¹3~u3B!%h1

]2F

]z2
, ~4b!

and supplementing with nonslip and insulating bound
conditions, respectively. The subscripth indicates the hori-
zontal part of the vector, and a bar denotes thex-y average.
Four linear independent solutions to the homogeneous
of Eq. ~4a! are U5(1,61i )exp$62A(cosu/2E)(171i )z%,
where the third sign is opposite to the first sign. For nons
~and stress-free! boundary conditions,U50 is the unique
solution to Eq.~4a! without forcing. Thus the mean velocit
is induced by the Lorentz force. The mean velocity may ha
a uniform component̂U&z ~this is not the case for stress-fre
boundary conditions since the volume average of the Lore
force is zerô (¹3B)3B&z50). Finally, having determined
u, we may evaluate the pressure force2¹f directly from
Eq. ~1a!.
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ROTATING CONVECTION-DRIVEN DYNAMOS AT LOW . . . PHYSICAL REVIEW E66, 056308 ~2002!
Numerical implementation

The program is a development of the code used by Jo
and Roberts@5#. This classical pseudospectral collocati
method expands potentials, mean fields, and temperatu
horizontal Fourier components and vertical Chebyshev p
nomials,

A~x,y,z!5 (
l 52(Nx21)

Nx21

(
m52(Ny21)

Ny21

(
n50

Nz211Nb
A

Alm
n

3ei2p( lx1my)Tn~2z!, ~5!

whereNb
A is the number of boundary equations for the qua

tity A. The equations to be solved are then, for each Fou
component, written atNz collocation points along thez axis.
These are the roots ofTNz

(2z). The factors of the nonlinea
terms are evaluated in physical space by Fourier transfo
ing the (x,y) dependence and Chebyshev transforming thz
coordinate. The products are then transformed back to
horizontal spectral space and vertical collocation mesh.
final nonlinear contribution is found by Adams-Bashforth e
trapolation. The time stepping is implemented by the Cra
Nicolson method. In the full dynamo problem, the time st
is increased at regular points in real time and adjusted in c
of numerical instability. We note that the inclined rotatio
axis results in a complex matrix to be inverted for each F
rier component in solving Eq. ~1a!. For
more details on the numerical method, see Ref.@5# and
Appendix B.

III. NONMAGNETIC CONVECTION

A. 3D model

As a first step we consider the onset of convection a
function of Ekman number. At low viscosity we expect th
viscous boundary layers with a thickness of orderE1/2,
Greenspan@6#. In an attempt to estimate the number of co
location points needed to resolve the Ekman layers, we
termine thez resolution at which the kinetic energy grow
rate at marginal convection has converged to better than
The result is shown in Fig. 2. For efficient fast Fourier tran
forms, the resolution is always taken as either a power of
or three times a power of 2. AsE is reduced, a critical value
of E is found at which the resolution is no longer adequa
These are the values ofE at which jumps in (Nz)min occur in
Fig. 2. This minimumz resolution is also sufficient to resolv
the second bifurcation, see below, and gives an impor
hint how to choose thez resolution at moderate Rayleig
number. An estimate of the number of collocation poin
within the Ekman layer atz51/2 is given by Nb

5(n50
Nz21exp$2(1/22zn)/2AE%. Those collocation pointszn

lying outside the boundary layer make a negligible contrib
tion to Nb , whereas each collocation point lying well withi
the boundary layer contributes by nearly unity to the su
The numberNb is displayed in Fig. 2 showing that approx
mately 2–3 collocation points are needed within the Ekm
layer.
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The critical Rayleigh number Rac
(1) for onset of convec-

tion appears to enter asymptotic regimes in the investiga
range of Ekman number, see Fig. 3. In the high viscos
region,E.131022, we find Rac

(1)5O(E), and for low Ek-
man numberE,131024, we observe as expected, Cha
drasekhar@7#, that Rac

(1)5O(E21/3) @an alternative Rayleigh

number Ra˜5Ra/E, suitable for nonrotating convection
would of course result in the more familiar scalings Ra˜

c
(1)

5O(1) andO(E24/3) respectively#.
We also show in Fig. 3 thel-index ~wave number in thex

direction! l 0 corresponding to the mode of largest amplitud
For E.131023, the wave numberl 051 dominates, so one
convection roll fills the box. WhenE,131023, thex scale
of the convection becomes smaller than the box width, an
scales asE1/3. The imposed periodic boundary condition
may be expected to have an effect on large-scale convec
Thus it is appropriate to stay well belowE,131023; ide-
ally below E,531025, where the horizontal plateaus o
l 0(E) have disappeared. In this regime the dominatingy

FIG. 2. Resolving the Ekman layers at the onset of convect
The required numbers of collocation pointsNz along thez axis are
shown by triangles. These numbers are also indicated by labels.
squares represent, on the right-hand scale, the corresponding
ber of collocation pointsNb within an Ekman layer.

FIG. 3. Onset of convection. The triangles indicate Rac
(1) along

the left-hand axis. The squares depictl 0 on the right-hand scale
wherel 0 is the l index of the horizontal peak mode. Linear regre
sion of the (E,l 0) points for l 0>2 results in the scalingl 0

5O(E20.35).
8-3
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mode of the steady convection ism50. This is expected
because the Taylor-Proudman theorem requires that st
unforced inviscid motion should be independent of the ro
tion axis coordinate. Presence of this effect limits they andz
dependences. In our model buoyancy driven convection
to depend on thez coordinate, but a Taylor-Proudman effe
in they direction is simply maximized by the roll axis align
ing with they direction. Thez structure is almost confined t
the Ekman layers.

The critical Rayleigh number Rac
(2) , where the steady

convection becomes unstable, has been determined, Fi
At this point two types of stable unsteady modes result. D
pending on the Ekman number, the convection is either
riodic or a two-torus. Fine structure in Rac

(2) is observed at
E53.431024,1.131024, and 5.031025. We note that the
large-scale structure of Rac

(2) is O(E21/3) for E,331025.
Thus compared with the onset of convection, the asympt
behavior of the second bifurcation is only established a
lower Ekman number. However, the asymptotic scaling
the critical Rayleigh number is the same.

B. 2.5D model

In an attempt to reduce numerical costs further, we inv
tigate how accurately a 2.5D model can reproduce the
two bifurcations of nonmagnetic convection. In general,
2.5D approach is a drastic procedure to obtain lower num
cal costs. In some cases it produces solutions quite diffe
from the 3D case. The only way to justify the method is
compare the results with 3D solutions. A successful exam
may be found in Ref.@4#. A few models exist where the 2.5D
approximation is exact, an example being the plane la
truncation of the G. O. Roberts dynamo. With roll cells p
allel to the boundaries and 2D periodicity imposed in t
layer, the magnetic field contains only a single mode alo
the roll cells.

FIG. 4. The first two bifurcations of nonmagnetic convectio
The triangles represent the critical Rayleigh number for onse
convection, Rac

(1) . The diamonds indicate the points where t
steady convection becomes unstable, Rac

(2) . The four stars locate
(E,Ra) of the dynamos considered in Sec. V. They are situated
the dotted line, which scales asE21/3.
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Usually, 2.5D means that only two modes are retained
the half-dimensional direction, one mode of the for
exp (i2pmy) for some nonzerom together with them50
mode. Here we relax this definition. A 2.5D model may co
tain more than two modes in they direction, but fewer than
the number of modes needed to fully resolve they direction.
Our simulations show that a two-mode 2.5D model is ins
ficient to produce the correct low Rayleigh number bifurc
tion schemes. However, considering the location of the fi
and second bifurcations, a four-mode 2.5D model sho
only minor deviations from the 3D scenario. This simplific
tion is possible because the inclined rotation axis limits
amount ofy dependence and this reduces the numerical c
considerably. It provides a powerful way of gaining appro
mated solutions before performing convergence tests
higher resolution. A further example will be given in th
magnetic case.

IV. SELECTION OF DYNAMOS

The parameter values of the convection-driven dynam
below have been selected by the following arguments. T
Rayleigh number is chosen with the same asymptotic sca
as for the first and second bifurcation of nonmagnetic c
vection, i.e., Ra5O(E21/3). It would be optimal to consider
only Ekman numbersE,331025, but due to the high nu-
merical cost in this regime, we includeE5131024 and 5
31025. At these points the relative distance of Ra to the fi
and second nonmagnetic bifurcations is approximately
same as whenE,331025, see Fig. 4. Thus we ensure th
the dynamos are driven by the same relative forcing stren
To ease the numerical integration we want to keep the R
leigh and Roberts numbers as small as possible. Thus
dispense with a highly supercritical Rayleigh number th
would be needed to fully model the forcing of the geod
namo. On the other hand we want to ensure kinematic
namo action at the chosen points in parameter space.
integration time is then determined by the need of good
tistics rather than the question of persistent subcritical
namo action. A subcritical plane layer dynamo atE55
31026 was reported by St. Pierre@8#, which, however, made
use of a perfect conducting exterior, hence preventing
magnetic energy from escaping through the upper and lo
walls. Demonstration of subcritical dynamo action requir
integration for several magnetic diffusion times, and this
duces the numerical advantage of low and subcritical val
of (Ra,q). We found examples of initially promising sub
critical 2.5D dynamos which, however, went into dec
states after 1–2 magnetic diffusion times.

We consider the kinematic dynamo problem where
Lorentz force in Eq.~1a! has been neglected. We may the
eliminate q in Eqs. ~1a! and ~1c! by the transformation
(u,f,t)→(qu,qf,t/q). Thus the effect of retainingq is to
enhance the velocity, pressure, and frequencies by a factq.
At q51 the velocity field is determined for given Ra andE,
and increasingq scales up the magnetic Reynolds numb
For a subspace of (Ra,E), we therefore expect a critica
Roberts numberqc(Ra,E) above which dynamo action ma
occur. Figure 5 shows the result atE5131024. Shortly
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ROTATING CONVECTION-DRIVEN DYNAMOS AT LOW . . . PHYSICAL REVIEW E66, 056308 ~2002!
after the second nonmagnetic bifurcationqc may be deter-
mined. It displays a minimum value 2.0 at Ra5165.

Matthews@9# has considered the onset of kinematic d
namo action for simple rotating convection rolls. He fin
that for moderate Ekman number and Prandtl number be
unity, dynamo action can bifurcate directly out of the stea
convection rolls, but at low Ekman numbers the flow is no
dynamo. This is consistent with our experience, which is t
for E,1024, it is necessary~but not sufficient! for dynamo
action to occur that convection is past the second bifurcat

For the full dynamo problem we choose (Ra,q)
5(180,4). This point, which is reasonably far away fro
antidynamo regions, is the lowermost star in Fig. 4. Also
2.5D flow is a dynamo at (Ra,q)5(180,4). This point is
located on the dotted line in Fig. 4, which scales
O(E21/3).

V. DYNAMO RESULTS

A. Kinematic and saturated regimes

The four dynamos at (E,Ra)5(131024,180),(5
31025,227),(2.531025,286), and (131025,388) are indi-
cated by stars in Fig. 4. The numerical resolutions
(Nx ,Ny ,Nz)5(24,16,32), ~24,16,48!, ~32,24,48!, and
~32,24,64!, respectively. The Taylor-Proudman effect impli
that they resolution can be lower than thex resolution. All
dynamos have Ra51.8Rac

(1) and q54. Being less numeri-
cally expensive, the dynamo solution atE5131024 is de-
veloped from the kinematic regime, Fig. 6. The satura
solution is then successively propagated towards lower
man number. This set of runs, denoted as sequence I, is
one referred to below unless otherwise specified. The h
numerical costs at the lower Ekman numbers allow only
tegration through a small fraction of a magnetic diffusi
time. However, the integration time should be long enough
eliminate transients. Thus we adopt the snapshot appro
taken by Roberts and Glatzmaier@10#. The solution is likely

FIG. 5. The kinematic dynamo problem atE5131024. The
squares locate the critical Roberts number for onset of dyna
action. The vertical lines indicate the first and second bifurcatio
of the nonmagnetic convection. The star represents the dynam
E5131024 in Sec. V.
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to be strongly time dependent on the time scale of magn
diffusion. An advantage of the snapshot method is thus
the time dependence of the solution is moderate within
investigated time interval. We may argue in favor of t
snapshot approach as follows. In the work of Brandenb
@11#, a forcing term allows a clear distinction between lar
and small scales. He finds that small-scale components o
velocity and the magnetic field relax faster than the lar
scale components. As shown later in the present paper, sm
scale structures become increasingly important compare
the large-scale components at lower viscosity. Thus the sn
shot method should capture a significant part of the rela
solution.

The dynamo atE5131024 is initiated by letting the
nonmagnetic convection state develop and then adding a
dom seed magnetic field. After less than 0.05 magnetic
fusion times, the solution enters the kinematic regime wh
the magnetic field and the mean velocity induced by
magnetic field grow exponentially. The mean velocity nev
becomes an important part of the flow. For the satura
solution, the time-averaged ratio between the kinetic ene
of the mean and total flow is 0.33%. At lower Ekman num
bers this ratio stays small (0.36%,0.26%, and 0.10%,
spectively!. In contrast, the magnetic mean field plays
greater role, especially at higher Ekman number. The tim
averaged ratio between the energy of the mean and
magnetic field is 41%, 36%, 34%, and 29%, respective
Thus the magnetic mean field is an important part of
solution, but not, however, to the same extent as in the
tical rotation axis case@5# where the Ku¨ppers-Lortz instabil-
ity provides an extra dynamo mechanism for magnetic m
field generation. We may note that the magnetic mean fi
becomes less important for low Ekman number.

As viscosity is reduced, we may hope to observe Ekm
number scalings. As seen in Fig. 7, our example dem
strates that this is not likely to happen forE.1025. At E

o
s,
at

FIG. 6. The dynamo atE5131024. Kinetic and magnetic en-
ergy, and temperature are displayed on the left-hand logarith
scale. The time stepdt and Emagdt are represented on the righ
hand logarithmic scale. In order to define the linestyles, let us fo
on the final state. From above we have kinetic energy~solid!, en-
ergy of the mean velocity~dotted!, magnetic energy~solid!, energy
of the mean magnetic field~dashed!, temperature~first solid line
below zero!, time step multiplied by the magnetic energy~dotted!,
and the time step~solid!.
8-5
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J. ROTVIG AND C. A. JONES PHYSICAL REVIEW E66, 056308 ~2002!
5131025, we find that the kinetic energy increases
O(E25/6), while the magnetic energyEmag5O(E21/6) and
the root mean square of the temperatureA^uTu2&xyz
5O(E21/12).

The required resolution of the saturated magnetic field
somewhat smaller than that of the kinematic solution. Ho
ever, as seen in Fig. 6, the time step drops considerably in
saturated regime. Figure 8 shows that^dt& t5O(E111/6),
making the low Ekman number case very expensive. T
time-averaged magnetic energy^Emag& tP@15,17#. The mag-
netic energy~Elsasser number! and the time step are antico
related, see Fig. 6. The quantityLdt is relevant for the nu-
merical stability of the magnetoconvection proble
considered in the work of Walkeret al. @12#. A stability con-
dition in the infinite Prandtl number limit is shown to b
Ldt,2E. In Fig. 8 we observe that̂Emagdt& t5O(E1). At
E5131025, we find ^Emagdt& t'2E/60. Thus in compari-

FIG. 7. Time-averaged kinetic energy~triangles!, magnetic en-
ergy ~diamonds!, and temperature~squares! of the dynamos on a
logarithmic scale. In order to obtain a compact figure we have
placed the magnetic energy and temperature by 3.0 and 4.5, re
tively. The dashed lines visualize various scalings.

FIG. 8. Time-averaged time step of the dynamo integratio
The triangles and diamonds depict the time averages^dt& t and
^Emagdt& t , respectively. The dashed lines visualize the indica
scalings.
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son to the magnetoconvection problem, the full dyna
problem is considerably more expensive. It should be no
that the above scalings seem to be somewhat depende
the magnetic energy. In a different sets of runs~sequence II!,
where ^Emag& tP@18,26# the time step has to be decreas
further. We find that the scaling of̂dt& t and ^Emagdt& t is
multiplied by O(E1/2).

B. Solution snapshots

All four dynamos display a strong influence of the Lo
entz force on the flow. At high Ekman number the spat
scale of the flow in planes perpendicular to the rotation a
is determined by the viscous force. At lower viscosity w
may expect the Lorentz force to increase the scale of
convection in regions where the magnetic field is strong a
slowly varying.

Snapshots of nonmagnetic/magnetic energy spectra a
same point in parameter space are displayed in Fig. 9.
nonmagnetic convection is weakly oscillating. The sha
peaks in the spectrum are probably due to a~nontypical!
perfect match between the periodic boundary conditions
our model and the periodicity of the corresponding solut
in an infinite plane layer. At a slightly higher Rayleigh num
ber, where the solution is steady, the spectral peaks broa
and structure has developed for oddm as well. We may com-
pare the kinetic energy spectra of nonmagnetic/magn
convection. In the two cases we observe that the domina
convective modes are (l ,m)5(68,0) and (61,0), respec-
tively. The results are summarized in Fig. 10. We find th
the l index of the dominating velocity mode is strongly r
duced by the Lorentz force forE<531025. On the other
hand, this scale separation effect is difficult to detect ab
E.131024, where viscosity limits convection to large
scale structures. Various definitions of strong-field solutio
have been suggested in the past. A review has recently b
given by Zhang and Schubert@13#. They define a strong-field
dynamo by the criterion that the magnetic feedback on
flow changes it significantly. This definition is more rigorou
than to require a large value of the Elsasser number@which is
O(10) for all four dynamos#. However, it should be noted
that also low-intensity magnetic fields can have a strong
fluence on the flow: as long as the Ekman number is su
ciently small, the magnetic field and rotation play the ma
role in controlling the length scales of the convection.

Figure 11 displays the spectral structure of the magn
and kinetic energies in the (l ,m) plane. The energy decline
in the two directions may be described as follows. We den
the set ofl indices byL and the positivel indices byL1 .
Similar setsM and M 1 are defined for them indices. We
denote the energy of the (l ,m) mode byE( l ,m) and put
Emax5max$E(l,m)ulPL,mPM%. The energy decline in thel
directions over four orders of magnitude may then be
scribed byl (n),n51, . . . ,8,where

l ~n!5min$ l 8PL1uE~ l ,m!<Emax102n/2,

l PL\$2~ l 821!, . . . ,l 821%,mPM %. ~6!

In the same manner we describe the energy decline in thm

-
ec-

.

d
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ROTATING CONVECTION-DRIVEN DYNAMOS AT LOW . . . PHYSICAL REVIEW E66, 056308 ~2002!
FIG. 9. Snapshots of kinetic and magnetic energy spectra. The first~second! row displays the kinetic energy spectra of nonmagne
~magnetic! convection at the same point in parameter space, i.e., the location of the dynamo atE5131025. The l spectra are shown fo
m50,1,2,3. The third row displays the magnetic energy spectrum of the dynamo.
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FIG. 10. The time-averagedl index of the four most significan
( l ,m) modes in the nonmagnetic (h) and the magnetic case(*).
The peak modes are connected by dashed lines, and the stro
secondary modes by dotted lines.
05630
direction by m(n). Figure 11 shows that thel spectra are
wider compared to them spectra. As the Ekman number
lowered, the kinetic and magnetic energy spectra broad
Thus despite the strong influence of the Lorentz force on
dominatingl modes it clearly cannot prevent development
small-scale structures. We note that atE5131024, the
complexity of the small-scale part of the velocity increas
faster than the complexity of the magnetic field, whereas
lower Ekman number similar complexity growth rates occ
This indicates that viscosity atE5131024 still plays a sig-
nificant role in determining the velocity length scales.
lower Ekman number the magnetic field takes over this ro
In comparison with the velocity, the magnetic field is mo
large scale. This effect suggests that dynamo action i
moderate Rayleigh number regime mainly occurs on lar
scales. By default, the nonmagnetic convection is a ki
matic dynamo. Thus it seems that the influence of the L
entz force on the flow switches off this small-scale dyna
and creates dynamo action at larger scales. This effect
vides the first step towards subcritical dynamo action.
est
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FIG. 11. Spectrum decay in the (l ,m) plane. The left-hand panel displays the energy decline in thel index. The kinetic~magnetic! energy
decline is shown by solid~dashed! lines. The time-averagedl index^ l (n)& t , see text, is for fixedn plotted as function of the Ekman numbe
The value ofn is indicated by labels, left~right!-hand sided labels belong to the solid~dashed! lines. The right-hand panel displays the ener
decline in them index in a similar way.
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Figure 12 displays a snapshot of the velocity and m
netic field in the y50 plane for the dynamo atE51
31025. We note the thin Ekman layers inux and uy . In
agreement with a strong Lorentz force we observe regi
with large-scale convection. However, there are also reg
where the flow resembles nonmagnetic convection w
O(E1/3) scales. Figure 13 shows the same quantities as
12 but in thex50 plane. The relatively large scales in th
plot are due to the effect of the inclined rotation axis. W
clearly observe the Taylor-Proudman effect making the qu
tities less dependent on the rotation axis coordinate. A sn
shot of the various forces in they50 plane is shown in Fig.
14. We see that for every force, except the viscous force,
may find more or less evenly distributed regions where
force is the strongest. The viscous force is strong only in
viscous boundary layers. In a similar snapshot forE51
31024 the viscous force plays a greater role in the bu
Regions where the viscous force contributes with m
than 6% are much more extended as compared to
E5131025 case. In Fig. 15 we compareuu3Bu, u¹3Bu,
and uBu in the y50 plane. We observe thatu¹3Bu!uu
3Bu, indicating that the main balance in Eq.~1b! is between
]B/]t and¹3(u3B), as in the frozen-flux approximation

C. Estimation of Ekman number scalings

The results of the previous section suggest a MAC b
ance in Eq.~1a! outside the viscous boundary layers. Taki
the curl in this region we obtain

2
]u

]zra
5¹3$~¹3B!3B%1qRa¹3Tez , ~7!

wherezra is the coordinate along the rotation axis. A balan
between the terms in Eq.~7! results in estimates for typica
velocitiesu and magnetic field length scalesLB . The Taylor-
Proudman effect implies length scales of orderO(1) along
the rotation axis. As seen in Figs. 12 and 13, this large-s
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structure is also present in the buoyancy force. Let us ass
that the temperature scales asT5O(ElT). Balance between
the first and last terms in Eq.~7! then gives a typical velocity
u'qRaT5O(E21/31lT). From Fig. 7 we may attempt to
estimate lT'21/12. The resulting kinetic energ
O(E22/312lT) is consistent with Fig. 7. Let us assume th
the magnetic field scales asElB. From a balance between th
first two terms in Eq.~7! we may then estimateLB5B/Au
5O(E1/61lB2lT/2). Thus assuming a decreasingLB as the
viscosity is lowered, we find a lower limit onlB.21/6
1lT/2. Figure 7 suggests thatlB'21/12, so that
LB5O(E1/8). This result is consistent with the observatio
that u¹3Bu!uu3Bu. We have u¹3Bu/uu3Bu
5O(E1/62lB2lT/2). So asE is reduced, the leading orde
balance is the frozen-flux approximation. For the sequenc
runs, we find (lT ,lB)'(21/6,21/12) whenE,531025.
The above values of (lT ,lB) should be taken as estimates.
is clear that numerical simulations, using today’s typic
computing facilities, only provide the first step towards d
termining the exact values of these numbers.

D. Taylorization

In the case of the geodynamo it seems appropriate
make the magnetostrophic approximation where the mom
tum equation reduces to

era3u52¹f1~¹3B!3B1qRaTez . ~8!

It is well known @14# that the existence of velocity solution
to Eq. ~8! requires special forcings. Usually the solvabili
criterion reduces to a constraint on the magnetic part of
forcing. A Taylor state is defined to be a magnetic field th
allows the momentum equation to be solved in the magn
strophic approximation. It involves averages taken alo
Taylor surfaces, which in our geometry are straight line s
ments parallel to the rotation axis. Taylor’s solvability co
dition in the present geometry is derived in Appendix A.
8-8
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ROTATING CONVECTION-DRIVEN DYNAMOS AT LOW . . . PHYSICAL REVIEW E66, 056308 ~2002!
FIG. 12. Snapshot of the velocity (ux ,uy ,uz) ~first row!, the magnetic field (Bx ,By ,Bz) ~second row!, and the temperatureT ~lowermost
left plot! in the y50 plane for the dynamo atE5131025. Positive~negative! values are depicted by solid~dashed! contour lines. The
interval below the each panel indicates the range of the displayed quantity. The contour level separation is denoted byDc. The two vector
field plots are (ux ,uz) ~left! and (Bx ,Bz) in the y50 plane. The interval below these plots gives the range of arrow lengths. The sna
is taken at the same time as for the magnetic part of Fig. 9.
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In spherical geometry, the Taylor surfaces are cylind
coaxial with the rotation axis. Some kinematic dynamos s
isfy Taylor’s condition directly, examples being given b
Jault and Cardin@15#. The spherical geometry allows a sym
metry ~rotation byp about an equatorial axis! that preserves
the Taylor cylinders. Kinematic dynamos with this symme
produce magnetic fields that are directly in a Taylor state
our geometry the inclined rotation axis prevents a symme
05630
s
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that preserves the Taylor line segments. In general, a c
pling between the geostrophic flow and magnetic field
needed in order to drive the magnetic solution toward
kinematic Taylor state.

A measure of Taylorization@16# is given in Appendix A.
The results are summarized in Fig. 16 that displays a
creasing~differential! Taylorization. The Taylorization seem
to scale asE1/6 at E5131025. Thus the magnetic solution
8-9
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FIG. 13. Similar to Fig. 12, but for thex50 plane. The two vector field plots are (uy ,uz) ~left! and (By ,Bz) in the x50 plane.
he

rg
de
y
eo
ta
in
n
c

lor
geo-
is
o-

be
the

el
is clearly approaching a Taylor state in the rangeE
P@1025,1024#. For the sequence II runs, we find that t
Taylorization scales asE1/3 at E5131025.

The ratio between the geostrophic and total kinetic ene
of the dynamos is about 14%, 13%, 14%, and 19%, in
creasing Ekman number order. The geostrophic velocit
somewhat influenced by the Lorentz force since the g
strophic energy is 22%, 25%, 24%, and 36% of the to
kinetic energy for nonmagnetic convection at the same po
in parameter space. The geostrophic velocity alone can
produce a Taylor state. In the classical Malkus-Proctor s
05630
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nario, it merely drives the solution towards kinematic Tay
states. Thus for saturated Taylor states we expect the a
strophic velocity to be a significant part of the flow, which
clearly confirmed in our case. However, even if the ge
strophic velocity is a minor part of the flow, it seems to
needed, by an approximately constant relative amount, in
production of approximate Taylor states.

E. 2.5D model

The 2.5D technique allows investigation of longer mod
time intervals. We keep thex andz resolutions as in the 3D
8-10
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ROTATING CONVECTION-DRIVEN DYNAMOS AT LOW . . . PHYSICAL REVIEW E66, 056308 ~2002!
FIG. 14. Snapshot of the various forces in they50 plane for the dynamo atE5131025. The first two rows are contour plots of th
absolute value of the forces. They are~in row major order! Coriolis, pressure, Lorentz, buoyancy, and viscous forces. The two lower
rows show the relative strengths of the forces~displayed in the previous order!. The intensity at each point scales linearly with the stren
of the force relative to the strongest force at this point. Thus the strongest force is white. The snapshot is taken at the same time
056308-11
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FIG. 15. Snapshot ofuu3Bu, u¹3Bu, anduBu in they50 plane for the dynamo atE5131025 ~first row!. The second row displays th
relative strength betweenuu3Bu and u¹3Bu by the method used in Fig. 14. The snapshot is taken at the same time as Fig. 12.
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case, see Sec. V A, but reduce the number ofy modes to 4
dealiased modes. In view of recent 2.5D successes, e.g.,
@4#, 2.5D results should not be rejected automatically. Sin
in addition, the nonmagnetic case has been designed to
good 2.5D results, we may put some confidence in the m
netic case as well.

FIG. 16. Taylorization as a function of the Ekman number. T
dashed line represents anE1/6 scaling.
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The four dynamos of Sec. V A have been integrated i
2.5D setting. AtE51024 the initial state is taken as a trun
cated saturated state of the 3D integration. The solu
spans three magnetic diffusion times, see Fig. 17. It displ
a strong time dependence. For large periods of time, the
sasser number stays well above 1. However, during relativ
short intervals, the magnetic field becomes very weak. T
nonmagnetic convection mode is restored, typically when

FIG. 17. A 2.5D dynamo atE5131024. The linestyle defini-
tions are the same as in Fig. 6 applied at the final state.
8-12



it

V
er

-
h
h

y

rd
th
ith
ifi

e
in
th
a
an

o

o
ar
th

th
a
h

r
ar

a

at
te

o
t

he
ic
at
te

er
e

ag
a
ts

a

-
ll
ri-
yet
use
ep
ting
ur

imi-
ki-
uite
the
re-

ll-
the

s for
op-
ther

is-
an
the
ac-
ng

R/
M
n

l

ors

q.

ROTATING CONVECTION-DRIVEN DYNAMOS AT LOW . . . PHYSICAL REVIEW E66, 056308 ~2002!
Elsasser number decreases below 1, and then kinematic
namo action drives the magnetic field back to a state w
Elsasser number above 1.

We employ the snapshot method described in Sec.
starting atE5531025. We then reduce the Ekman numb
down to 531026 in three steps. The magnetic energyEmag

in @4,10#. At E5531026, some features in this 2.5D ex
ample are comparable with the 3D model. The geostrop
component is about 28% of the total kinetic energy. T
temperature scaling is compatible withO(E21/12) and the
kinetic energy isO(E22/3). However, the magnetic energ
scaling isO(E21/2) and the Taylorization scales asO(E4/3).
The latter indicates that the solution is moving faster towa
a Taylor state than the 3D model. Thus it seems that
dynamical part of the 2.5D integration is comparable w
the 3D model, but that the magnetic properties differ sign
cantly.

VI. CONCLUSIONS

In theE→0 asymptotic regime, the leading order featur
of the flow are not influenced by viscosity, except within th
viscous boundary layers. A number of indicators suggest
we have achieved this asymptotic regime for moderate R
leigh number rotating convection-driven dynamos with
Ekman number below 1024.

A crude indicator consists of comparing the strength
the viscous force with other forces. ForE,1024, the mag-
netostrophic approximation applies to good accuracy alm
everywhere except within the Ekman layers. This comp
son also shows that a MAC balance is maintained within
bulk.

As we have demonstrated in this paper, the structure
the kinetic energy spectra provides a good indicator of
asymptotic regime. In these spectra we obtain scale sep
tion between the magnetic and nonmagnetic cases only w
E,1024. This scale separation must be present in orde
conclude that the leading order effects on the bulk flow
not influenced by viscosity. We note that atE5131024, an
Elsasser number of orderO(10) is not sufficient to produce
scale separated solution.

In the asymptotic regime, Taylor’s constraint is only s
isfied approximately. Our 3D example clearly demonstra
that differential Taylorization occurs whenE,1024. This
does not imply that the magnetic field is either simple
steady. Rather remarkably, the flow continually adjusts
generate an approximate Taylor solution. Violation of t
Taylor’s constraint influences the geostrophic velocity, wh
in turn adjusts the magnetic solution towards a Taylor st
The strength of this feedback mechanism is approxima
constant forE,1024.

A fourth asymptotic regime indicator is provided by ord
of magnitude estimates. Based on the MAC balance we
timate the kinetic energy, a typical length scale of the m
netic field, and the frozen-flux approximation. We find th
these estimates are consistent with the numerical resul
E5131025.

The above indicators either start to appear or are alre
present whenEP@1025,1024#. Thus it seems likely that the
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next decade,EP@1026,1025#, which at present is too expen
sive numerically to be explored extensively, will be we
within the asymptotic regime. Unfortunately, current sphe
cal convection-driven dynamo models are generally not
in the asymptotic regime, which is hard to achieve beca
of the high resolution required and the small time st
needed to maintain stability. Because of the large compu
requirement, it is natural to look for simplified models. O
2.5D model with four modes in they direction is one such
model. The results suggest that 3D and 2.5D results are s
lar in many respects, e.g., time series of quantities like
netic energy, magnetic energy, and temperature are q
similar. However, it seems that the magnetic properties of
solutions are somewhat different and that 3D models are
quired to describe these fully.

Finally, an important result is that at low viscosity, sma
scale structures become increasingly important relative to
large-scale components. This feature provides some basi
the snapshot method, but since the small-scale structures
erate on faster time scales, it also raises the question whe
the Ro→0 asymptotic regime becomes narrower at low v
cosity. If so, future low Ekman number simulations face
additional challenge. In order to establish the extent of
Ro→0 regime, inertial acceleration has to be taken into
count and the solutions will have to be characterized alo
an extra dimension of parameter space.

ACKNOWLEDGMENTS

This work was supported by PPARC Grant No. G
L40922. The computational work was performed on the IB
SP2 computing facility at the University of Exeter, and o
the cluster of the U.K. MHD consortium~Compaq Alpha
EV6!. We would also like to thank A. M. Soward for usefu
discussions.

APPENDIX A: TAYLOR’S CONDITION

In order to derive the solvability condition for Eq.~8!, we
rotate the coordinate system an angleu about thex axis.
Denoting the new coordinates by (x,y,z), Eq. ~8! becomes

ez3u52¹f1G. ~A1!

The upper and lower boundaries are parametrized by

~x,y!→„x,y, f ~x,y!…,~x,y!→„x,y,g~x,y!…, ~A2!

respectively. Thus perpendicular outward directed vect
are, e.g.,nT52¹ f 1ez and nB5¹g2ez . In the following,
we impose no-penetration boundary conditions,

nT•uT50, nB•uB50. ~A3!

We may find a necessary solvability condition for E
~A1! by taking the curl and average

nT•^¹3G&50, ~A4!
8-13
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J. ROTVIG AND C. A. JONES PHYSICAL REVIEW E66, 056308 ~2002!
where^•••& denotes the average along thez axis. Equation
~A4! turns out to be sufficient as well. To prove the latter w
construct a solution@17#,

u52¹3Q, f5ez•Q, ~A5!

Q5
1

2 F E
g

z

G dz82E
z

f

G dz8G . ~A6!

Since

~¹3Q!T5
1

2
@^¹3G&1nT3GT2nB3GB#, ~A7!

~¹3Q!B5
1

2
@2^¹3G&1nT3GT2nB3GB#, ~A8!

the boundary conditions~A3! reduce to Eq.~A4!. Thus Eq.
~A1! may be solved if and only if Taylor’s condition~A4! is
satisfied. The buoyancy force is perpendicular to the bou
aries, hence only the magnetic field is subjected to Tayl
condition.

Let us consider the form of the geostrophic velocity. S
lutions (u,f), ¹•u50, to Eq.~A1! differ by a component
that satisfies the homogeneous part,

ez3u52¹f. ~A9!

It is clear that a solution (u,f), ¹•u50, to Eq. ~A9! is z
independent. Letf(x,y) be given. Thenu5nT3¹f is the
unique incompressible velocity. If on the other hand,u(x,y),
¹•u50, is given we may find a pressuref since ¹3(ez
3u)50. Thus the velocity part of a solution to Eq.~A1! is
unique when the geostrophic component,

uG52^nT3~ez3u!&, ~A10!

is restricted to zero. The geostrophic velocity has zero div
gence, since

¹•^v&5^¹•v&2nT•vT2nB•vB . ~A11!

Let us return to the previous coordinate system. Taylo
condition ~A4! then becomes

ez•^¹3G& ra50, ~A12!

where^•••& ra is the average along the rotation axis. We p
h5ez•¹3G. We may define a scalar, the Taylorization Ta
to indicate how well the Taylor’s condition is satisfied

Tay5
^u^h& rau2&xy

^^uhu2& ra&xy

. ~A13!

Expanding

h5(
l ,m

n

Alm
n ei2p( lx1my)Tn~2z!, ~A14!

we find that
05630
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,

Tay5

(
l ,m

U E
21/2

1/2

e2 i2pmt tanuAlm~ t !dtU2

(
l ,m

E
21/2

1/2

uAlm~ t !u2 dt

, ~A15!

whereAlm(t)5(nAlm
n Tn(2t). The geostrophic velocity com

ponent ofu is

uG52
^ez3~era3u!& ra

ez3era
. ~A16!

APPENDIX B: PARALLELIZATION OF PROGRAM

The computer program may run on parallel architectu
by use of mixed MPI/OpenMP. The two communication pr
tocols may be activated independently. This allows comm
nication to be optimized on different types of parallel com
puters: clusters, SMPs, and SMP clusters. To simplify
description below we restrict it to the pure MPI case.

The required communication between processors oc
when ~i! performing transforms between spectral and phy
cal space,~ii ! evaluating global quantities such as energ
and ~iii ! loading and saving states. The state monitoring
usually kept to a minimum. Thus only optimization of~i! is
important for program performance. The third index of t
3D arrays is distributed among the processors, and trans
mation between spectral and physical space involves,
each value of the second index, a matrix transposition
distributed 2D arrays. Hence each processor has to send
to itself and every other processor.

Figure 18 illustrates the program flow. For example, t
first step evaluates the toroidal/poloidal/mean field expan

FIG. 18. Program flow and interprocess communication sche
The vertical lines indicate the network between processes. The
quired transpositions of distributed arrays have been numb
1–19. The abbreviations are as follows.DXY: x andy derivatives,
DZ: z derivatives, FT: Fourier transforms, CT: Chebyshev tra
forms, P: products of nonlinear term, Send~Recv!: either a blocking
all-to-all MPI call ~no operation! or a set of point-to-point non-
blocking MPI sends~receives! ~note that in the former case th
number of calls may be reduced to 4, see text!.
8-14
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ROTATING CONVECTION-DRIVEN DYNAMOS AT LOW . . . PHYSICAL REVIEW E66, 056308 ~2002!
magnetic field in horizontal Fourier space and on the vert
collocation mesh~the calculations arez derivatives, followed
by Chebyshev transforms, and completed by evaluationx
and y derivatives!. The three distributed vector componen
of the magnetic field are then transposed. In the third s
the magnetic field is evaluated on the horizontal Fourier g
by Fourier transforms.

The communication may be performed in three differe
ways, see Fig. 18.

~i! Each communication is a blocking all-to-all MPI ca
The performance of this scheme has been tested on an
SP2 using up to 16 processors. The scaling is good, e.g
resolution 3234348 a speedup factor of 13.6 is obtained
16 processors. Performance is best, of course, when the n
ber of processors divide the sizes of the distributed dim
sions.

~ii ! The 19 communications can be collected into fo
.

te

A

y

05630
l

p,
d

t

M
at

m-
-

r

large packages:~1–6!, ~7–9!, ~10–15!, and ~16–19!. This
method may use the network bandwidth more efficien
However, on the SP2 it turns out that the performance o
increases slightly.

~iii ! Each communication is a set of nonblocking point-t
point MPI calls allowing computation and communication
be overlapped. The principle is to send~receive! as early
~late! as possible. A large part of the time spent on the n
linear terms is used on Fourier or Chebyshev transforms.
may overlap these transforms with nonblocking communi
tion as shown in Fig. 18. This method has the potentia
eliminate the communication overhead all together. Ho
ever, the hardware must support concurrent computation
communication in order to gain extra performance.

A performance comparison between the above three c
munication schemes favors method~ii ! marginally on the
SP2.
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