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Rotating convection-driven dynamos at low Ekman number
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We present a fully 3D self-consistent convection-driven dynamo model with reference to the geodynamo. A
relatively low Ekman number regime is reached, with the aim of investigating the dynamical behavior at low
viscosity. This regime is computationally very demanding, which has prompted us to adopt a plane layer model
with an inclined rotation vector, and to make use of efficiently parallelized code. No hyperdiffusion is used, all
diffusive operators are in the classical form. Our model has infinite Prandtl number, a Rayleigh number that
scales a€ ~® (E being the Ekman numbgrand a constant Roberts number. The optimized model allows us
to study dynamos with Ekman numbers in the rafit@ °,10 #]. In this regime we find strong-field dynamos
where the induced magnetic fields satisfy Taylor’s constraint to good accuracy. The solutions are characterized
by (i) a MAC balance within the bulk, i.e., Coriolis, pressure, Lorentz, and buoyancy forces are of comparable
magnitude, while viscous forces are only significant in thin boundary lagiershe Elsasser number @(10),

(ii ) the strong magnetic fields cannot prevent small-scale structures from becoming dominant over the large-
scale componentsiv) the Taylor-Proudman effect is detectakle), the Taylorization decreases as the Ekman
number is lowered, an@/i) the ageostrophic velocity component makes up 80% of the flow.

DOI: 10.1103/PhysReVvE.66.056308 PACS nunierd7.65+a, 91.25.Cw

[. INTRODUCTION that the present implementations of hyperviscosity are of
limited value when investigating low viscosity features of
Significant progress has been made in recent years in ngonvection-driven dynamos. In this paper we use the classi-
merical simulations of the geodynamo. Self-consistent 30xal form for all diffusion terms.
models now produce dipole-dominated magnetic fields with This  paper considers nonmagnetic  convection,
strengths and reversals similar to the geomagnetic fieldzonvection-driven kinematic dynamos, and fully self-
However, the numerically accessible part of parameter spad@nsistent dynamos at low Ekman number. It is organized as
is still quite far from the actual parameter values of planetaryfollows. A model description is given in Sec. II. In Sec. Il
dynamos. In this paper we focus on the problems related t/€ consider the properties of low Rayleigh number nonmag-
the low viscosity regime, which is the relevant limit for plan- netic convection. Based on the nonmagnetic bifurcation
etary dynamos. At present, 3D convection-driven dynamos ischeme, we select in Sec. IV a number of points in parameter
rotating spherical shells typically have Ekman numbers irspace for the full dynamo problem. The dynamo results are
the rangeE e[1074,10" 3], e.g., Christensent al.[1]. Vis-  described in Sec. V. Section VI gives our conclusions.
cosity still plays an important role in these solutions, so it is
not clear whether they are in the correct dynamical regime, Il. THE MODEL
i.e., the leading order force balance in these models may not
be the same as the leading order force balance in planetary An incompressible electrically conducting fluid is
interiors. Narrowing the investigated part of parameter spacbounded by two horizontal plates. The distance between the
and reducing the integration time to a small fraction of theplates isd. We imposed periodicity in the horizontal X,y)
magnetic diffusion time may allow Ekman numbers belowdirections, i.e., we may depict the layer as a box, Fig. 1.
10 *. In comparison, a 3D plane layer model offers a moreNonslip boundary conditions are imposed on the velocity.
cost-reduced and efficient code, mainly because CartesidBravity g is uniform and directed vertically downwards. The
geometry codes make effective use of fast Fourier transformsystem is heated from below keeping a temperature differ-
in all three dimensions. It is then possible to investigate theenceAT, between the plates. Solid electrical insulators are
next decadeE e[10 °,10 #]. Glatzmaier and Roberte] imposed outside the layer. The rotation axis of the system
made one of the first attempts to circumvent the difficultiesQ=Qe,,, wheree,=(0,—sin,cosé), is tilted relative to
at low viscosity by use of hyperviscosity. This modified vis- vertical by an angle in the (y,z) plane. The inclined rota-
cosity operator enhances diffusion monotonically as a function axis may be considered as an attempt to model a non-
tion of the latitudinal wave number. Later, Zhang and Jonegolar region of the earth’s outer core. For zero inclination,
[3] showed that hyperviscosity has significant dynamical efthe system is X,y) symmetric. A consequence is the exis-
fects, broadening the convection cells as higher classical vitence of the Kppers-Lortz instability of finite-amplitude
cosity would do. Hyperviscosity can also prevent the dy-convection where the axis of the dominating convection roll
namo from reaching solutions satisfying Taylor's constraintcontinually rotates about the axis. Recent work on this
at low Ekman number, see Sarsehal. [4]. Thus it seems instability may be found in Refl5]. Inclining the rotation
axis sufficiently eliminates this instability. This reduces the
need of high resolution along the convection rolls, so that a
*Electronic address: jonr@maths.ex.ac.uk 2.5D model(see Sec. IlIB beloywcan be used to explore
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where (v,k) are the kinematic viscosity and thermal diffu-
sivity, and « is the thermal expansion coefficient. The
Rossby number Re 7/2Q0d? estimates the strength of the
inertial acceleration compared to the Coriolis force. For the
geodynamo where (RB)=(10"°,10 %9, it would be opti-
mal to apply the magnetostrophic approximati@anishing
inertial acceleration and viscous forgebut inviscid self-
consistent models have so far proven to be numerically in-
tractable. In our model we put Re0 but retain kinematic
viscosity. The Prandtl number PE/qRo is then infinite.

In units of RoQ p7d® andQp7d3, the kinetic and mag-
netic energies are SimplyEy,=(|u?y,, and Epag
=(|B|?)xy;, Where(- - -),,, denotes the volume average. We
note that for Re=0, we cannot compare the dimensional
kinetic and magnetic energy. The Elsasser number is in terms

FIG. 1. A rotating cube of liquid made up of electrically con- of the dimensional magnetic field defined bw
ducting material. A Cartesian coordinate system is fixed relative to= Bgim/ZQMOP n. Thus the Elsasser number may be esti-

the box. The coordinate origin is at the box center, and the coordimated by the nondimensional magnetic energy= B2
nate directions are indicated by the vector triplet.

~Emag-
. The system(1a)—(1d) is solved by expanding the solenoi-
parameter space alongside fully 3D runs. On the other hangyy) fieldsu andB in toroidal, poloidal, and mean field com-
increasingd towardsar/2 for E<1x 10~ causes the flow at ponents

onset of convection to become increasingly poloidal. At the

sigular point 6=x/2 the flow is purely poloidal. Atd U=V xVe,+VXVxXWe,+U, (33
= /2.1 nokinematic dynamos have been found for moder-
ate Rayleigh and Roberts numbers; see also Sec. IV. As a B=VXGe,+VXVXHe,+F. (3b)

compromise between these two extremes, we chapse
= /4, where the marginal flow d=1X10"* has equi- The mean fielddJ and F depend only orgz, and have no
partion between the toroidal and poloidal energies. component in the direction. Equations for the velocity po-
In the Boussinesqg approximation, we then solve tentials are obtained by the component of the curl and
double curl of Eqg.(1a. The resulting system is supple-
€aXU=—Vo+(VXB)XB+qRale,+EV2U, (1@  mented with nonslip boundary conditions. In a similar way,
B the time derivative of the the magnetic field potentials are
i 2 found from thez component and thecomponent of the curl
at VX(uxB)+ VB, (1b) of Eq. (1b) together with electrically insulating boundary
conditions. Equations for the mean fields are obtaineg-by
%‘FU-(VT—QZ)ZQVZT, (10 averaging the horizontal part of Eqd.a and(1b)
2

- U
V.u=0, V-B=0, (1d) CosﬁeZXUz{(VXB)XB}m-EF, (4a)

where the temperaturg,+ T has been decomposed into the
basic state profilel,(z)=—z—1/2+T,(—1/2) and pertur-
bationT. At the boundarie3 (x,y,*+ 1/2)=0. The velocity is
denoted byu, the magnetic field b8, and ¢ is the sum of
the pressure, the centrifugal potential, and the buoyancy paind supplementing with nonslip and insulating boundary
tential of the basic state. In the following, is referred to as  conditions, respectively. The subscriptindicates the hori-
the pressure. We have nondimensionalized the system Wontal part of the vector, and a bar denotesxheaverage.

aF_—V 5 &°F a5
E_{ X (uX )}h+g, (4b)

choosing the following scales: Four linear independent solutions to the homogeneous part
f Eq. (4 =(1,%4i =+ 2BE) (154
td¥y rd, uogld B:N20mep7 of Eq. (48 are U=(1,%,i)exp{x,(COSHI2E) (17 4i)z},

where the third sign is opposite to the first sign. For nonslip
(and stress-freeboundary conditionslJ=0 is the unique
solution to Eq.(4a) without forcing. Thus the mean velocity
where (uq,p,7) are the vacuum permeability, density, and is induced by the Lorentz force. The mean velocity may have

magnetic diffusivity, respectively. Thus in addition to the & Uniform componentU), (this is not the case for stress-free
angle of inclinationd we introduce the Ekman, Rayleigh boundary conditions since the volume average of the Lorentz

Tb,T:ATb, ¢29ﬂ, (2)

and Roberts numbers force is zero{(V X B) X B),=0). Finally, having determined
u, we may evaluate the pressure fore&/ ¢ directly from
(E,RaQ) = (v/20d?,gaAT,d/2Q k, &/ 7), Eqg. (1a.
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Numerical implementation y ' y T y
The program is a development of the code used by Jone 100 anaagg
and Robertg5]. This classical pseudospectral collocation g
method expands potentials, mean fields, and temperature i [ Addgy
horizpntal Fourier components and vertical Chebyshev poly~ gg} rb g 4
nomials, i . 1
| LA A Ay
Ny—1 Ny—1 N271+N§ L ansnaanffis |
A(X,y,Z)= 2 2 2 Alnm 0 Bog a Bo 5o - +0
I==(Ny—1) m=—(Ny—1) n=0 E""._.D"'._, O8pn0p —0 Y0 o 2.0 N,
X ei277(|x+my)Tn(22)’ (5) L L L L L 0.0
1 2 3 4 5 6 7
log,, E™

WhereNﬁ is the number of boundary equations for the quan-
tity A. The equations to be solved are then, for each Fourier FIG. 2. Resolving the Ekman layers at the onset of convection.
component, written dil, collocation points along theaxis.  The required numbers of collocation poimNg along thez axis are

These are the roots dfy (2z). The factors of the nonlinear shown by triangles. These numbers are also indicated by labels. The
z

terms are evaluated in physical space by Fourier transforrrﬁ—qualres represent, on the right-hand scale, the corresponding num-
er of collocation pointdN, within an Ekman layer.

ing the (x,y) dependence and Chebyshev transformingzthe
coordinate. The products are then transformed back to the . .
horizontal spectral space and vertical collocation mesh. The 1N€ critical Rayleigh number | for onset of convec-

final nonlinear contribution is found by Adams-Bashforth ex- 10" @ppears to enter asymptotic regimes in the investigated

trapolation. The time stepping is impiemented by the Crankfange of Ekman_gumbe_r, seel§3|g. 3. In the high viscosity
Nicolson method. In the full dynamo problem, the time step™®9i0n,E>1x10", we I'”d R&“=0(E), and for low Ek-

is increased at regular points in real time and adjusted in caggan numberE<1Xx10"", we observe as expected, Chan-
of numerical instability. We note that the inclined rotation drasekhaf7], that R¢”=0O(E~*?) [an alternative Rayleigh

axis results in a complex matrix to be inverted for each Founumber Ra Ra/E, suitable for nonrotating convection,
rier  component in  solving Eq. (1a. For  would of course result in the more familiar scalings{Ra

more details on the numerical method, see R&}. and =0(1) andO(E~*?) respectively.
Appendix B. We also show in Fig. 3 theindex (wave number in the
direction |, corresponding to the mode of largest amplitude.
IIl. NONMAGNETIC CONVECTION For E>;>< 10‘3,_ the wave numbelp,=1 dominates, so one
convection roll fills the box. WheE<1x 10 3, thex scale
A. 3D model of the convection becomes smaller than the box width, and it

As a first step we consider the onset of convection as &cales asE'®. The imposed periodic boundary conditions
function of Ekman number. At low viscosity we expect thin May be expected to have an effect on large-scale convection.
viscous boundary layers with a thickness of ordef? ~ Thus it is appropriate to stay well beloli<1x10"%; ide-
Greenspaii6]. In an attempt to estimate the number of col- ally below E<5x10"°, where the horizontal plateaus of
location points needed to resolve the Ekman layers, we dde(E) have disappeared. In this regime the dominatjng
termine thez resolution at which the kinetic energy growth
rate at marginal convection has converged to better than 1% 3O ' ' ' ' ' ' ] =0
The result is shown in Fig. 2. For efficient fast Fourier trans- ]
forms, the resolution is always taken as either a power of two
or three times a power of 2. ASis reduced, a critical value

2.5F 1 15

of E is found at which the resolution is no longer adequate.’s 2-0F 71 10 =
s . ! & [ ] e

These are the values Bfat which jumps in N,) i, Occur in . . ] )

Fig. 2. This minimunz resolution is also sufficient to resolve & 1.5F o5 =

the second bifurcation, see below, and gives an important [ Speon ]

hint how to choose the resolution at moderate Rayleigh 1.0F 00000 0 OOgef o 1 oo

number. An estimate of the number of collocation points ]

within the Ekman layer atz=1/2 is given by Ny 0.5L . . L . . . 1-0.5

=2§§Olexp{—(1/2— z,)/2\E}. Those collocation points, 0 1 % 3 4 5 6 v

lying outside the boundary layer make a negligible contribu- logn £

tion to N, , whereas each collocation point lying well within - 1. 3. Onset of convection. The triangles indicaté'Ralong
the boundary layer contributes by nearly unity to the sumghe left-hand axis. The squares depigton the right-hand scale,

The numbeiN is displayed in Fig. 2 showing that approxi- wherel, is thel index of the horizontal peak mode. Linear regres-
mately 2—3 collocation points are needed within the EKmarsion of the €,l,) points for 1,=2 results in the scalind,

layer. =0(E %39,
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[ ' ' ' ' ] Usually, 2.5D means that only two modes are retained in
2 gk 4 1 bifurcation i the half-dimensional direction, one mode of the form
:j :;;;:;‘z:atm“ 1 exp (27my) for some nonzeran together with them=0

' mode. Here we relax this definition. A 2.5D model may con-
tain more than two modes in thedirection, but fewer than
the number of modes needed to fully resolve yhdirection.

Our simulations show that a two-mode 2.5D model is insuf-
ficient to produce the correct low Rayleigh number bifurca-
tion schemes. However, considering the location of the first
and second bifurcations, a four-mode 2.5D model shows
only minor deviations from the 3D scenario. This simplifica-
tion is possible because the inclined rotation axis limits the
amount ofy dependence and this reduces the numerical costs
considerably. It provides a powerful way of gaining approxi-
mated solutions before performing convergence tests at
higher resolution. A further example will be given in the
pwagnetic case.

24F

log, Ra

3.0 3.5 4.0 4.5 5.0 5.5
log, E™

FIG. 4. The first two bifurcations of nonmagnetic convection.
The triangles represent the critical Rayleigh number for onset o
convection, Rﬁ). The diamonds indicate the points where the
steady convection becomes unstable{?’RaThe four stars locate IV. SELECTION OF DYNAMOS
(E,Ra) of the dynamos considered in Sec. V. They are situated on

the dotted line. which scales &5 /3 The parameter values of the convection-driven dynamos

below have been selected by the following arguments. The
Rayleigh number is chosen with the same asymptotic scaling
mode of the steady convection is=0. This is expected, as for the first and second bifurcation of nonmagnetic con-
because the Taylor-Proudman theorem requires that steaghgction, i.e., R& O(E~ 9. It would be optimal to consider
unforced inviscid motion should be independent of the rotaonly Ekman number&<3x10°, but due to the high nu-
tion axis coordinate. Presence of this effect limitsyrendz ~ merical cost in this regime, we include=1x10"* and 5
dependences. In our model buoyancy driven convection hax 10~ °. At these points the relative distance of Ra to the first
to depend on the coordinate, but a Taylor-Proudman effect and second nonmagnetic bifurcations is approximately the
in they direction is simply maximized by the roll axis align- Same as wheE<3x10"°, see Fig. 4. Thus we ensure that
ing with they direction. Thez structure is almost confined to the dynamos are driven by the same relative forcing strength.
the Ekman layers. To ease the numerical integration we want to keep the Ray-
The critical Rayleigh number %a where the steady Ie_lgh and R_oberts_numbers as_small as p_055|ble. Thus we
convection becomes unstable, has been determined, Fig. diSPense with a highly supercritical Rayleigh number that
At this point two types of stable unsteady modes result. De¥ould be needed to fully model the forcing of the geody-
pending on the Ekman number, the convection is either pe?@M0- On the other hand we want to ensure kinematic dy-
riodic or a two-torus. Fine structure in {3his observed at 'aMO action at the chosen points in parameter space. The
E—3.4x10 % 1.1x10 % and 5.0¢10°5. We note that the integration time is then determined by the need of good sta-

large-scale structure of & is O(E~¥3) for E<3x10°5 tistics rather than the question of persistent subcritical dy-
A .

Thus compared with the onset of convection, the asymptoti&aﬂ;c_)ﬁ %;f?épgrtz%bg;“sialpg ?[g(]a J\%i; ?]%wgzra:: de

behavior of the second bifurcation is only established at dse of a perfect conducting exterior, hence preventing the

lower Ekman number. However, the asymptotic scaling oiJ'I : .
the critical Rayleigh number is the same. magnetic energy from escaping through the upper and lower

walls. Demonstration of subcritical dynamo action requires
integration for several magnetic diffusion times, and this re-
duces the numerical advantage of low and subcritical values
In an attempt to reduce numerical costs further, we invesof (Raq). We found examples of initially promising sub-
tigate how accurately a 2.5D model can reproduce the firstritical 2.5D dynamos which, however, went into decay
two bifurcations of nonmagnetic convection. In general, thestates after 1-2 magnetic diffusion times.
2.5D approach is a drastic procedure to obtain lower numeri- We consider the kinematic dynamo problem where the
cal costs. In some cases it produces solutions quite differettorentz force in Eq(1a) has been neglected. We may then
from the 3D case. The only way to justify the method is toeliminate g in Egs. (1a and (1c) by the transformation
compare the results with 3D solutions. A successful exampléu, ¢,t)—(qu,q¢,t/q). Thus the effect of retaining is to
may be found in Refl4]. A few models exist where the 2.5D enhance the velocity, pressure, and frequencies by a factor
approximation is exact, an example being the plane layeAt q=1 the velocity field is determined for given Ra aid
truncation of the G. O. Roberts dynamo. With roll cells par-and increasing] scales up the magnetic Reynolds number.
allel to the boundaries and 2D periodicity imposed in theFor a subspace of (R&), we therefore expect a critical
layer, the magnetic field contains only a single mode alondgroberts numbeq.(RaE) above which dynamo action may
the roll cells. occur. Figure 5 shows the result B=1x10*. Shortly

B. 2.5D model
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L d [ b: B, »dt ]
2 8k - =57 C: Eogg ¢ E
b [ ] [ d: E2, ]
B [ _10 e: <|TF>4: 3
o 6F E 1-5
a4 N 3 7 ',%=¥j by T ]
s AF * ] ~15F // WAL WLl PRSI MR B
Q [ h E £ ] =
;‘E 2 :_ -: -20 o l 1 1 1 1 1-9
&) 0 [ \ , 0.0 0.2 0.4 0.6 0.8 1.0

Time
50 100 150 200 250
Rayleigh number Ra FIG. 6. The dynamo & =1X10"*. Kinetic and magnetic en-

ergy, and temperature are displayed on the left-hand logarithmic
FIG. 5. The kinematic dynamo problem Bt=1x10*. The scale. The time stedt and E,,4dt are represented on the right-
squares locate the critical Roberts number for onset of dynamband logarithmic scale. In order to define the linestyles, let us focus
action. The vertical lines indicate the first and second bifurcationspn the final state. From above we have kinetic endeplid), en-
of the nonmagnetic convection. The star represents the dynamo atgy of the mean velocitydotted, magnetic energysolid), energy
E=1x10"*in Sec. V. of the mean magnetic fieldashed, temperaturdfirst solid line
below zerg, time step multiplied by the magnetic ener@potted,
after the second nonmagnetic bifurcatign may be deter- and the time stegsolid).
mined. It displays a minimum value 2.0 at R&65.
Matthews[9] has considered the onset of kinematic dy-
namo action for simple rotating convection rolls. He finds

to be strongly time dependent on the time scale of magnetic
diffusion. An advantage of the snapshot method is thus that

the time dependence of the solution is moderate within the

that for moderate Ekman number and Prandtl number beinﬁ]vestigated time interval. We may argue in favor of the
unity, dynamo action can bifurcate directly out of the_steadysnapshot approach as follows. In the work of Brandenburg
convection r_oII_s, but at low Ekman numbe_rs the ﬂOV.V IS not 11], a forcing term allows a clear distinction between large
dynamo. This is consistent with our experience, which is tha nd small scales. He finds that small-scale components of the
for E<10™ %, it is necessarybut not sufficient for dynamo

. SR . . velocity and the magnetic field relax faster than the large-
action to occur that convection is past the second bn‘urcatlorgCale components. As shown later in the present paper, small-
For the full dynamo problem we choose (RBh, ) '

—(180.4). This point, which is reasonably far away from scale structures become increasingly important compared to

i . i the | *star in Fig. 4. Also th the large-scale components at lower viscosity. Thus the snap-
antidynamo regions, IS the fowermost star in Fg. 2. AISO & ot method should capture a significant part of the relaxed
2.5D flow is a dynamo at (Rg)=(180,4). This point is

X . \ . solution.
Iocatgs on the dotted line in Fig. 4, which scales as The dynamo aE=1x10"* is initiated by letting the
O(E™™H). nonmagnetic convection state develop and then adding a ran-
dom seed magnetic field. After less than 0.05 magnetic dif-
V. DYNAMO RESULTS fusion times, the solution enters the kinematic regime where
the magnetic field and the mean velocity induced by the
magnetic field grow exponentially. The mean velocity never
The four dynamos at H,Ra)=(1x10%180,(5 becomes an important part of the flow. For the saturated
X107°,227),(2.5<107°,286), and (X 10°°,388) are indi-  solution, the time-averaged ratio between the kinetic energy
cated by stars in Fig. 4. The numerical resolutions aref the mean and total flow is 0.33%. At lower Ekman num-
(Ny,Ny,N,)=(24,16,32), (24,16,48, (32,24,48, and bers this ratio stays small (0.36%,0.26%, and 0.10%, re-
(32,24,64, respectively. The Taylor-Proudman effect implies spectively. In contrast, the magnetic mean field plays a
that they resolution can be lower than theresolution. All  greater role, especially at higher Ekman number. The time-
dynamos have Ral.8R4" andq=4. Being less numeri- averaged ratio between the energy of the mean and total
cally expensive, the dynamo solutionBt=1x 104 is de- magnetic field is 41%, 36%, 34%, and 29%, respectively.
veloped from the kinematic regime, Fig. 6. The saturatedlhus the magnetic mean field is an important part of the
solution is then successively propagated towards lower Eksolution, but not, however, to the same extent as in the ver-
man number. This set of runs, denoted as sequence |, is thieal rotation axis casgs] where the Kppers-Lortz instabil-
one referred to below unless otherwise specified. The higlty provides an extra dynamo mechanism for magnetic mean
numerical costs at the lower Ekman numbers allow only infield generation. We may note that the magnetic mean field
tegration through a small fraction of a magnetic diffusionbecomes less important for low Ekman number.
time. However, the integration time should be long enough to  As viscosity is reduced, we may hope to observe Ekman
eliminate transients. Thus we adopt the snapshot approactumber scalings. As seen in Fig. 7, our example demon-
taken by Roberts and Glatzmaiei0]. The solution is likely  strates that this is not likely to happen far-10 °. At E

A. Kinematic and saturated regimes
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55F . <p o T y ] son to the magnetoconvection problem, the full dynamo
L >“ ey - ] problem is considerably more expensive. It should be noted
50F o <<IMT'1’>£>f 0% -7 gAY ] that the above scalings seem to be somewhat dependent on
[ ] the magnetic energy. In a different sets of r¢ssquence )|
[ P ] where(EmaQte[18,26] the time step has to be decreased
. 45 JPtae ] further. We find that the scaling dfdt), and (Eyat); is
@ —_— e ] multiplied by O(EY?).
T 40fF S
[ ] B. Solution snapshots
35F e -- . All four dynamos display a strong influence of the Lor-
<E™* entz force on the flow. At high Ekman number the spatial
3ot . . . 1 scale of the flow in planes perpendicular to the rotation axis
35 40 45 50 55 is determined by the viscous force. At lower viscosity we

may expect the Lorentz force to increase the scale of the
convection in regions where the magnetic field is strong and
FIG. 7. Time-averaged kinetic energyiangles, magnetic en- ~ Slowly varying.
ergy (diamond$, and temperaturésquarey of the dynamos on a Snapshots of nonmagnetic/magnetic energy spectra at the
logarithmic scale. In order to obtain a compact figure we have dissame point in parameter space are displayed in Fig. 9. The
placed the magnetic energy and temperature by 3.0 and 4.5, respgmnmagnetic convection is weakly oscillating. The sharp
tively. The dashed lines visualize various scalings. peaks in the spectrum are probably due tgnantypica)
perfect match between the periodic boundary conditions of
=1x10"°, we find that the kinetic energy increases asour model and the periodicity of the corresponding solution
O(E %), while the magnetic energfmag= O(E~¥6 and in an infinite plane layer. At a slightly higher Rayleigh num-
the root mean square of the temperatuW xyz ber, where the solution is steady, the spectral peaks broaden
=0O(E~Y13. and structure has developed for audhs well. We may com-
The required resolution of the saturated magnetic field igare the kinetic energy spectra of nonmagnetic/magnetic
somewhat smaller than that of the kinematic solution. How-convection. In the two cases we observe that the dominating
ever, as seen in Fig. 6, the time step drops considerably in tHéonvective modes ard,(n)=(+8,0) and (+1,0), respec-
saturated regime. Figure 8 shows tHatt),= O(E'*'9), tlvely: The results are .summanzed'ln Fig. 1Q. We find that
making the low Ekman number case very expensive. Théhel index of the dominating velocity mc>5de is strongly re-
time_averaged magnetic ener@ma&te[lsylﬂ_ The mag- duced by the Lorentz fO_rce ch$5>< 107 . On the other
netic energy(Elsasser numbgand the time step are anticor- hand, this scale separation effect is difficult to detect above
related, see Fig. 6. The quantitydt is relevant for the nu- E>1X10"% where viscosity limits convection to large-
merical stability of the magnetoconvection problem scale structures. Various definitions of strong-field solutions
considered in the work of Walkest al.[12]. A stability con- ~ have been suggested in the past. A review has recently been
dition in the infinite Prandtl number limit is shown to be given by Zhang and Schub¢3]. They define a strong-field
Adt<2E. In Fig. 8 we observe the(Emangt:O(El)- At dynamo by the criterion that the magnetic feedback on the

E=1x10"°, we find(Epagdt);~2E/60. Thus in compari- flow changes it significantly. This definition is more rigorous
than to require a large value of the Elsasser nurfihich is

_50F . T T . 0O(10) for all four dynamok However, it should be noted
- ] that also low-intensity magnetic fields can have a strong in-
—-55F 3 fluence on the flow: as long as the Ekman number is suffi-
: ] ciently small, the magnetic field and rotation play the major
—6.0F ] role in controlling the length scales of the convection.
. : ] Figure 11 displays the spectral structure of the magnetic
gi) -85F 3 and kinetic energies in thd ,m) plane. The energy decline
- 1 1 in the two directions may be described as follows. We denote
—voF 3 the set ofl indices byL and the positivd indices byL , .
F ] Similar setsM and M, are defined for then indices. We
—7 5 O <Eaydt>, 3 denote the energy of thd,m) mode byE(l,m) and put
F A <di>, ] Emax=maxE(l,m)|leL,meM}. The energy decline in the
-8.0t ) 1 1 ] directions over four orders of magnitude may then be de-
3.5 4.0 4.5 5.0 5.5 scribed byl (n),n=1, ... ,8,where

log,, E |
[(n)=min{l" e L+|E(| ,m)sEmaxlo—n/Z’

FIG. 8. Time-averaged time step of the dynamo integrations.

The triangles and diamonds depict the time averagh$; and leL{—(1"=1),...|'=1},me M}. (6)
(Emagdt), respectively. The dashed lines visualize the indicated
scalings. In the same manner we describe the energy decline imthe
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FIG. 9. Snapshots of kinetic and magnetic energy spectra. Thgdesond row displays the kinetic energy spectra of nonmagnetic
(magneti¢ convection at the same point in parameter space, i.e., the location of the dyn&walat10 °. Thel spectra are shown for
m=0,1,2,3. The third row displays the magnetic energy spectrum of the dynamo.
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0O: non—-magnetic convection
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a]

3.5

5.0

A
4,55_:___
= ’-1:‘. “-E
o’ B a
[u]
*
;':';";";i"_":‘:"_*':u ''''''' i
4.0 4.5
log, E™

5.5

FIG. 10. The time-averagddndex of the four most significant
(I,m) modes in the nonmagneti¢k) and the magnetic cagg).
The peak modes are connected by dashed lines, and the strongestd creates dynamo action at larger scales. This effect pro-
secondary modes by dotted lines.

direction bym(n). Figure 11 shows that thkespectra are
wider compared to then spectra. As the Ekman number is
lowered, the kinetic and magnetic energy spectra broaden.
Thus despite the strong influence of the Lorentz force on the
dominatingl modes it clearly cannot prevent development of
small-scale structures. We note that Bt1x104, the
complexity of the small-scale part of the velocity increases
faster than the complexity of the magnetic field, whereas for
lower Ekman number similar complexity growth rates occur.
This indicates that viscosity &=1x 10" * still plays a sig-
nificant role in determining the velocity length scales. At
lower Ekman number the magnetic field takes over this role.
In comparison with the velocity, the magnetic field is more
large scale. This effect suggests that dynamo action in a
moderate Rayleigh number regime mainly occurs on larger
scales. By default, the nonmagnetic convection is a kine-
matic dynamo. Thus it seems that the influence of the Lor-
entz force on the flow switches off this small-scale dynamo

vides the first step towards subcritical dynamo action.
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FIG. 11. Spectrum decay in thé ) plane. The left-hand panel displays the energy decline ihithdex. The kinetidmagneti¢ energy
decline is shown by solidashed lines. The time-averagddndex{l(n)), see text, is for fixed plotted as function of the Ekman number.
The value ofn is indicated by labels, lgftight)-hand sided labels belong to the saldshedllines. The right-hand panel displays the energy
decline in them index in a similar way.

Figure 12 displays a snapshot of the velocity and magstructure is also present in the buoyancy force. Let us assume

netic field in they=0 plane for the dynamo aE=1 that the temperature scales Bs O(E7). Balance between

X 107°. We note the thin Ekman layers im, and uy. In  the first and last terms in E¢7) then gives a typical velocity
agreement with a strong Lorentz force we observe regions~qRal=O(E~Y*"*1). From Fig. 7 we may attempt to
with large-scale convection. However, there are also regionsstimate At~—1/12. The resulting kinetic energy
where the flow resembles nonmagnetic convection withO(E~%3*21) is consistent with Fig. 7. Let us assume that
O(EY?) scales. Figure 13 shows the same quantities as Fighe magnetic field scales &&. From a balance between the
12 but in thex=0 plane. The relatively large scales in this first two terms in Eq(7) we may then estimateg= B/\u

plot are due to the effect of the inclined rotation axis. We=Q(EY®**s~*1?) Thus assuming a decreasihg as the
clearly observe the Taylor-Proudman effect making the quanviscosity is lowered, we find a lower limit ong>—1/6

tities less dependent on the rotation axis coordinate. A snap+ /2. Figure 7 suggests thahg~—1/12, so that
shot of the various forces in the=0 plane is shown in Fig. Lz=0(EY®). This result is consistent with the observation
14. We see that for every force, except the viscous force, Wehat  |VxXB|<|uxB|. We have |VXB|/|uxB]

may find more or less evenly distributed regions where the=O(EY6*e~*1?) So asE is reduced, the leading order
force is the strongest. The viscous force is strong only in thgalance is the frozen-flux approximation. For the sequence ||
viscous boundary layers. In a similar snapshot Eo 1 runs, we find §1,\g)~(—1/6,—1/12) whenE<5x 10 °.
X107 the viscous force plays a greater role in the bulk.The above values of\G ,\g) should be taken as estimates. It
Regions where the viscous force contributes with morgs clear that numerical simulations, using today’s typical
than 6% are much more extended as compared to th€omputing facilities, only provide the first step towards de-
E=1x10"° case. In Fig. 15 we compatexB|, [VXB|,  termining the exact values of these numbers.

and |B| in the y=0 plane. We observe thd¥V xB|<|u
X B, indicating that the main balance in Edb) is between

. : . D. Taylorization
dBldt andV X (uxB), as in the frozen-flux approximation. y

In the case of the geodynamo it seems appropriate to
make the magnetostrophic approximation where the momen-

) ) tum equation reduces to
The results of the previous section suggest a MAC bal-

ance in Eq(1a) outside the viscous boundary layers. Taking
the curl in this region we obtain

C. Estimation of Ekman number scalings

g, XUu=—-Veop+(VXB)XB+qRadle,. (€]

It is well known[14] that the existence of velocity solutions
to Eq. (8) requires special forcings. Usually the solvability
criterion reduces to a constraint on the magnetic part of the
forcing. A Taylor state is defined to be a magnetic field that
wherez,, is the coordinate along the rotation axis. A balanceallows the momentum equation to be solved in the magneto-
between the terms in Eq7) results in estimates for typical strophic approximation. It involves averages taken along
velocitiesu and magnetic field length scalkeg . The Taylor-  Taylor surfaces, which in our geometry are straight line seg-
Proudman effect implies length scales of or@gl) along ments parallel to the rotation axis. Taylor’s solvability con-
the rotation axis. As seen in Figs. 12 and 13, this large-scaldition in the present geometry is derived in Appendix A.

u
=VX{(VXB)XB}+qRaVXxTe,,

. )
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FIG. 12. Snapshot of the velocity{,u, ,u,) (first row), the magnetic fieldB, ,B, ,B,) (second roy, and the temperaturk (lowermost
left plot) in the y=0 plane for the dynamo @& =1x10 5. Positive(negativg values are depicted by solidlashedl contour lines. The
interval below the each panel indicates the range of the displayed quantity. The contour level separation is dexotdthbytwo vector
field plots are @, ,u,) (left) and B,,B,) in they=0 plane. The interval below these plots gives the range of arrow lengths. The snapshot
is taken at the same time as for the magnetic part of Fig. 9.

In spherical geometry, the Taylor surfaces are cylinderghat preserves the Taylor line segments. In general, a cou-
coaxial with the rotation axis. Some kinematic dynamos satpling between the geostrophic flow and magnetic field is
isfy Taylor's condition directly, examples being given by needed in order to drive the magnetic solution towards a
Jault and Cardifl15]. The spherical geometry allows a sym- kinematic Taylor state.
metry (rotation by7r about an equatorial axishat preserves A measure of Taylorizatiofl6] is given in Appendix A.
the Taylor cylinders. Kinematic dynamos with this symmetry The results are summarized in Fig. 16 that displays a de-
produce magnetic fields that are directly in a Taylor state. Ircreasingdifferential) Taylorization. The Taylorization seems
our geometry the inclined rotation axis prevents a symmetryo scale a€® at E=1x10 °. Thus the magnetic solution
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is clearly approaching a Taylor state in the ranfe

nario, it merely drives the solution towards kinematic Taylor

e[10°°,10 #]. For the sequence Il runs, we find that the states. Thus for saturated Taylor states we expect the ageo-
strophic velocity to be a significant part of the flow, which is

Taylorization scales aE*® at E=1x10°.

The ratio between the geostrophic and total kinetic energglearly confirmed in our case. However, even if the geo-
of the dynamos is about 14%, 13%, 14%, and 19%, in destrophic velocity is a minor part of the flow, it seems to be
creasing Ekman number order. The geostrophic velocity ifieeded, by an approximately constant relative amount, in the
somewhat influenced by the Lorentz force since the geoProduction of approximate Taylor states.
strophic energy is 22%, 25%, 24%, and 36% of the total
kinetic energy for nonmagnetic convection at the same points
in parameter space. The geostrophic velocity alone cannot The 2.5D technigue allows investigation of longer model
produce a Taylor state. In the classical Malkus-Proctor scetime intervals. We keep the and z resolutions as in the 3D
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FIG. 14. Snapshot of the various forces in the0 plane for the dynamo @&=1x10 °. The first two rows are contour plots of the
absolute value of the forces. They dne row major ordey Coriolis, pressure, Lorentz, buoyancy, and viscous forces. The two lowermost
rows show the relative strengths of the forédsplayed in the previous ordeiThe intensity at each point scales linearly with the strength
of the force relative to the strongest force at this point. Thus the strongest force is white. The snapshot is taken at the same time as Fig. 12.

056308-11



. ROTVIG AND C. A. JONES

0.0

0.2
luxB|, [0.0151, 2888.1], Ac=144.41

-0.2

0.0

0.2

[VxB|, [1.2539, 474.28], Ac=23.714

0.0

0.4

|B|, [0.0293, 10.602], Ac=0.5301

PHYSICAL REVIEW B6, 056308 (2002

T ~ = T—T ‘—r
ol . T =
4
0.2+ . .
. ]
. ]
0.0 B
[a ) ]
L
-0.2+ ' g
.
: o ]
-0.4 - ' ~ 1 )
-04 -02 0.0 0.2 0.4 —04 -02 00 0.2 0.4 0.4 0.6 0.8 1.0

[uxB|, [0.0005, 1.0000] [VxB|, [0.0088, 1.0000]
FIG. 15. Snapshot dux B, |V xBJ, and|B| in they=0 plane for the dynamo &= 1x10"° (first row). The second row displays the
relative strength betwednix B| and|V X B| by the method used in Fig. 14. The snapshot is taken at the same time as Fig. 12.

case, see Sec. V A, but reduce the numbey ofodes to 4 The four dynamos of Sec. V A have been integrated in a
dealiased modes. In view of recent 2.5D successes, e.g., R&5D setting. AtE=10 * the initial state is taken as a trun-

[4], 2.5D results should not be rejected automatically. Sincegated saturated state of the 3D integration. The solution
in addition, the nonmagnetic case has been designed to giwpans three magnetic diffusion times, see Fig. 17. It displays
good 2.5D results, we may put some confidence in the maga strong time dependence. For large periods of time, the El-
netic case as well. sasser number stays well above 1. However, during relatively
short intervals, the magnetic field becomes very weak. The
nonmagnetic convection mode is restored, typically when the

-14 [ T T T
-18F .
. —1.8F .
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e
-2.0F 7 . -5
I oz SRR A R R e, S T .
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FIG. 17. A 2.5D dynamo aE=1x10"*. The linestyle defini-

FIG. 16. Taylorization as a function of the Ekman number. The
tions are the same as in Fig. 6 applied at the final state.

dashed line represents &%° scaling.
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Elsasser number decreases below 1, and then kinematic dyext decadeE e[10 °,10"°], which at present is too expen-
namo action drives the magnetic field back to a state witrsive numerically to be explored extensively, will be well
Elsasser number above 1. within the asymptotic regime. Unfortunately, current spheri-
We employ the snapshot method described in Sec. V &al convection-driven dynamo models are generally not yet
starting atE=5x10"°. We then reduce the Ekman number in the asymptotic regime, which is hard to achieve because
down to 5< 10" ° in three steps. The magnetic eneBy.g of the high rgso!ution _rgquired and the small time step
in [4,10]. At E=5X10°%, some features in this 2.5D ex- Nneeded to maintain stability. Because of the large computing
ample are comparable with the 3D model. The geostrophigequwement, it is natural to Io_ok for s_lmpl_lfled_ models. Our
component is about 28% of the total kinetic energy. The2->P Model with four modes in the direction is one such
temperature scaling is compatible wid(E~ %19 and the model. The results suggest that 3D and 2.5D results are simi-

kinetic energy iSO(E~23). However, the magnetic energy Iart_ln many respects,t.e.g., time seréjest of qua?tmes like k|.;
scaling isO(E Y2 and the Taylorization scales @(E#3). ~ NEUC €nergy, magnetic energy, and temperature are quite

The latter indicates that the solution is moving faster towardé'm'l".’w' However, it seems'that the magnetic properties of the
a Taylor state than the 3D model. Thus it seems that thgolutlons are somewhat different and that 3D models are re-

dynamical part of the 2.5D integration is comparable withqUired to describe these fully.

the 3D model, but that the magnetic properties differ signifi- Finally, an important “?S“'t IS Fhat at low viscosity, small-
cantly. scale structures become increasingly important relative to the

large-scale components. This feature provides some basis for
the snapshot method, but since the small-scale structures op-
erate on faster time scales, it also raises the question whether
In theE— 0 asymptotic regime, the leading order featuresthe Ro—0 asymptotic regime becomes narrower at low vis-
of the flow are not influenced by viscosity, except within thin cosity. If so, future low Ekman number simulations face an
viscous boundary layers. A number of indicators suggest tha@dditional challenge. In order to establish the extent of the
we have achieved this asymptotic regime for moderate RayR0— 0 regime, inertial acceleration has to be taken into ac-
leigh number rotating convection-driven dynamos with ancount and the solutions will have to be characterized along

VI. CONCLUSIONS

Ekman number below 1. an extra dimension of parameter space.
A crude indicator consists of comparing the strength of
the viscous force with other forces. FBK 1074, the mag- ACKNOWLEDGMENTS

netostrophic approximation applies to good accuracy almost

everywhere except within the Ekman layers. This compari- This work was supported by PPARC Grant No. GR/

son also shows that a MAC balance is maintained within thd-40922. The computational work was performed on the IBM

bulk. SP2 computing facility at the University of Exeter, and on
As we have demonstrated in this paper, the structure oihe cluster of the U.K. MHD consortiuniCompag Alpha

the kinetic energy spectra provides a good indicator of thd=V6). We would also like to thank A. M. Soward for useful

asymptotic regime. In these spectra we obtain scale separéliscussions.

tion between the magnetic and nonmagnetic cases only when

E<10 “ This scale separation must be present in order to APPENDIX A: TAYLOR'S CONDITION

conclude that the leading order effects on the bulk flow are

not influenced by viscosity. We note thatit1x10 %, an In order to derive the solvability condition for EB), we

Elsasser number of ord€(10) is not sufficient to produce a rotate the coordinate system an angleabout thex axis.

scale separated solution. Denoting the new coordinates by,{,z), Eq. (8) becomes
In the asymptotic regime, Taylor’s constraint is only sat-

isfied approximately. Our 3D example clearly demonstrates eXu=—V¢+G. (A1)

that differential Taylorization occurs wheB<10™ 4. This
does not imply that the magnetic field is either simple orthe upper and lower boundaries are parametrized by
steady. Rather remarkably, the flow continually adjusts to
generate an approximate Taylor solution. Violation of the
Taylor’s constraint influences the geostrophic velocity, which
in turn adjusts the magnetic solution towards a Taylor state, . . ,
: ) . . respectively. Thus perpendicular outward directed vectors
The strength of this feedback mechanism is approxmatel%l " - .
- re, e.g.ny=—Vf+e andng=Vg—e,. In the following,

constant forE <10 “. we impose no-penetration boundary conditions

A fourth asymptotic regime indicator is provided by order P P y '
of magnitude estimates. Based on the MAC balance we es-
timate the kinetic energy, a typical length scale of the mag-
netic field, and the frozen-flux approximation. We find that . N -
these estimates are consistent with the numerical results at We may find a necessary solvability condition for Eg.

(X,y)—= (XY, f(X,¥),(X,y)—=(X,y,9(x,y)), (A2)

nT'UTZO, nB'UBZO. (A3)

E=1X1075. (A1) by taking the curl and average
The above indicators either start to appear or are already
present wherE e[ 10 °,10 #]. Thus it seems likely that the n-(VXG)=0, (A4)
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where(- - -} denotes the average along thexis. Equation
(A4) turns out to be sufficient as well. To prove the latter we B: DZ,CT,DXY,Send (=3 w: Recv,FT 1
construct a solutioh17],
07} VxB: DZ,CT,DXY,Send 3—3 VI: Recv,FT 1
u=-VXxQ, ¢=e-Q, (AS) B: Recv,FT 3 Vx(uxB): P,FT,Send 15—
34— 18—
1l rz f VxB: Recv,FT > DY) +(VT—e,): P,FT,Send 19—
Q=5 | GdzZ - | GdZ|. (AB) =
2| Jg 2 (VxB)xB: PFT,Send §—3 Vx(uxB): Recv,CT 154
99— 18 4—
. . 74— L e
Since (VxB)xB: Recv,CT g4 B: Time step
1 wu: Solve u +(VT—e,): Recv 19 ¢—|
XQ)r==[(VX X Gr—ngX
(VXQ)r 2[<V G)+niXGr—ngXGg], (A7) w: DZ.CT,DXY,Send 223 T Timestep
1 VT: DZ,CT,DXY,Send 2;5’
(VXQ)BZE[_<VXG>+HTXGT_nBXGB]a (A8)
the boundary conditionéA3) reduce to Eq(A4). Thus Eq FIG. 18. Program flow and interprocess communication scheme.

The vertical lines indicate the network between processes. The re-
dguired transpositions of distributed arrays have been numbered
1-19. The abbreviations are as follovsXY: x andy derivatives,

%Z: z derivatives, FT: Fourier transforms, CT: Chebyshev trans-

(A1) may be solved if and only if Taylor’s conditiof®4) is
satisfied. The buoyancy force is perpendicular to the boun
aries, hence only the magnetic field is subjected to Taylor’
condition. . . . forms, P: products of nonlinear term, SeiiRecy): either a blocking
_Let us consider the form of the g_eostrophlc velocity. SO'aII-to-aII MPI call (no operation or a set of point-to-point non-
lutions (u,¢), V-u=0, to Eq.(Al) differ by a component pjocking MPI sends(receives (note that in the former case the

that satisfies the homogeneous part, number of calls may be reduced to 4, see)text
exXu=—Vg. (A9) . )
e*iZWmttal’lf)A t)dt
It is clear that a solutiony,¢), V-u=0, to Eq.(A9) is z I'm f—l/Z im(t
independent. Lety(x,y) be given. Theru=n; XV ¢ is the Tay= 7 ,  (A1D)
unique incompressible velocity. If on the other hangk,y), lE J 1/2|A|m(t)|2dt
,m -

V.u=0, is given we may find a pressugg since VX (e,
X u)=0. Thus the velocity part of a solution to EGAL) is

— n i i -
unique when the geostrophic component, whereA,(t) =2 ,A,, Tn(2t). The geostrophic velocity com

ponent ofu is

Ue=—(rrx(&Xu)), (A0 (&% (€aXW)ra
Ug=——7——. A16
is restricted to zero. The geostrophic velocity has zero diver- ¢ €, X €a (A19)
gence, since
APPENDIX B: PARALLELIZATION OF PROGRAM
V‘<V>:<V'V>_nT'VT_nB'VB. (All)

_ _ The computer program may run on parallel architectures
Let us return to the previous coordinate system. Taylor'ssy use of mixed MPI/OpenMP. The two communication pro-

condition (A4) then becomes tocols may be activated independently. This allows commu-
nication to be optimized on different types of parallel com-
& (VXG)ra=0, (A12) puters: clusters, SMPs, and SMP clusters. To simplify the

description below we restrict it to the pure MPI case.

The required communication between processors occurs
when (i) performing transforms between spectral and physi-
cal space(ii) evaluating global quantities such as energy,

(R al? and (iii ) loading and saving states. The state monitoring is
— a7y (A13)  usually kept to a minimum. Thus only optimization @f is

<<|h|2>ra>xy important for program performance. The third index of the
. 3D arrays is distributed among the processors, and transfor-
Expanding mation between spectral and physical space involves, for

N each value of the second index, a matrix transposition of
_ n _i2m(lx+m distributed 2D arrays. Hence each processor has to send data
h_LEm Ame 7T, (22), (A14) to itself and every other processor.
Figure 18 illustrates the program flow. For example, the
we find that first step evaluates the toroidal/poloidal/mean field expanded

where(- - - ),, is the average along the rotation axis. We put
h=e,- VX G. We may define a scalar, the Taylorization Tay,
to indicate how well the Taylor’s condition is satisfied

Tay
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magnetic field in horizontal Fourier space and on the verticalarge packages(1-6), (7-9, (10-15, and (16—19. This
collocation mestithe calculations arederivatives, followed method may use the network bandwidth more efficiently.
by Chebyshev transforms, and completed by evaluation of However, on the SP2 it turns out that the performance only
andy derivatives. The three distributed vector componentsincreases slightly.

of the magnetic field are then transposed. In the third step, (iii) Each communication is a set of nonblocking point-to-
the magnetic field is evaluated on the horizontal Fourier gricpoint MPI calls allowing computation and communication to

by Fourier transforms. be overlapped. The principle is to sefitceive as early
The communication may be performed in three different(late) as possible. A large part of the time spent on the non-
ways, see Fig. 18. linear terms is used on Fourier or Chebyshev transforms. We

(i) Each communication is a blocking all-to-all MPI call. may overlap these transforms with nonblocking communica-
The performance of this scheme has been tested on an IBlibn as shown in Fig. 18. This method has the potential to
SP2 using up to 16 processors. The scaling is good, e.g., atiminate the communication overhead all together. How-
resolution 3X4x48 a speedup factor of 13.6 is obtained onever, the hardware must support concurrent computation and
16 processors. Performance is best, of course, when the numemmunication in order to gain extra performance.
ber of processors divide the sizes of the distributed dimen- A performance comparison between the above three com-
sions. munication schemes favors methéd) marginally on the

(i) The 19 communications can be collected into fourSP2.
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